忿惺噱 发表于 2025-6-7 09:39:47

FRDM-MCXN947开发板之i2c应用

介绍

MCXN947

NXP FRDM-MCXN947开发板是一款基于MCXN947 MCU的低成本评估板,MCU集成了双核Arm Cortex-M33微控制器和一个神经处理单元(NPU)。开发板由一个MCXN947控制器和一个64 Mbit外部串行闪存组成。该板还具有P3T1755DP I3C温度传感器,TJA1057GTK/3Z CAN PHY,以太网PHY, SDHC电路(卡槽为DNP), RGB LED,触摸板,高速USB,按钮,和MCU-Link调试接口。该板兼容Arduino屏蔽模块,Pmod板,mikroBUS。该板还支持摄像头模块和NXP低成本LCD模块PAR-LCD-S035

开箱视频

我通过参过RT-Thread社区的活动,拿到了京东的包裹,板子的开箱视频:FRDM-MCXN947开发板开箱_哔哩哔哩_bilibili
开发环境

基本的开发资料有以下几个,软件包或者资料都可以在NXP官网、Keil的官网找到,插一句话,最近Keil免费了

[*]MDK531
[*]NXP.MCXN947_DFP.17.0.0
[*]rt_vsnprintf_full-latest.zip开发包
[*]官方的文档:UM12018.pdf
[*]RT-Thread GitHub仓库最新代码
开发环境搭建请参考视频:FRDM-MCXN947开发板开发环境上手_哔哩哔哩_bilibili
实验目的

最近南方地区都在下暴雨,气候闷热潮湿,人们出门都在时刻关注天气的变化情况;刚好这个时候RT-Thread社区给我送来一款包装精致的NXP开发板,让我手头上的BME280温湿度气压传感器有了用武之地;BME280采用i2c接口和主机通信,能实时监控室内、室外的温度、湿度、大气压情况,基于它我们能做很多工业、物联网、医疗、汽车方面的应用
实验准备

我们需要准备以下材料

[*]NXP FRDM-MCXN947开发板
[*]温湿度气压模块BME280 (i2c接口)
[*]SSD1306 OLED模块(i2c接口)
[*]公母头杜邦线若干
模块电路

板载资源

本次实验是通过软件i2c + 硬件i2c方式来进行通信,软件i2c采用引脚P0_4 (SCL)和P0_5 (SDA) ,硬件i2c采用引脚P0_25 (SCL)和P0_24 (SDA),前者位于J9内侧的第8和第9引脚,后者位于J2外侧的第7和第5引脚,引脚图参考如下,注意不要接错

实物连接

软件i2c口接OLED SSD1306模块,硬件i2c口接BME280模块,电源VCC和GND在J8和J6上面都有,千万别接错了!

程序设计

模块配置

克隆rt-thread官方仓库的代码,MCXN947板子的最小例程在bsp\nxp\mcx\mcxn\frdm-mcxn947目录下
git clone https://github.com/RT-Thread/rt-thread.git用RT-Thread Studio导入frdm-mcxn947工程,然后打开env工具
https://img2024.cnblogs.com/blog/1031983/202406/1031983-20240607222646718-384142722.png
在env终端输入命令menuconfig,配置rt-thread工程

在RT-Thread Components下找到Device Drivers并Select进去,软件i2c引脚配置如下

在Hardware Drivers Config下找到On-chip Peripheral Drivers并Select进去,硬件i2c引脚配置如下

找到RT-Thread online packages -> peripheral libraries and drivers -> ssd1306并Select进去,配置SSD1306模块,记得改掉I2c bus name和开启ssd1306的sample选项,这里名称为i2c2,和上面配置的软件i2c名称一致

配置完后通过Exit退出,先更新软件包,再导出为mdk5工程,然后用Keil5打开
pkgs --update
scons --target=mdk5编译工程

需要注释一些代码确保编译通过
ssd1306_tests.h

ssd1306.h

编码集成

SSD1306

调用初始化接口并设置背景为黑色
ssd1306_Init();
ssd1306_Fill(Black);绘图接口示范,先往buffer里边填字符串数据,然后设置坐标,再绘制字符
rt_memset(buffer, SIZE, 0);
rt_snprintf(buffer, SIZE, "Temp : %d'C\r\n",(int)temp_act);
ssd1306_SetCursor(2, 26);
ssd1306_WriteString(buffer, Font_6x8, White);BME280

readCalibrationData、calibration_T、calibration_P、calibration_H用于读取和校准BME280的数据
static unsigned long int hum_raw,temp_raw,pres_raw;
static rt_uint8_t data;
static signed long int t_fine;
static uint16_t dig_T1;
static int16_t dig_T2;
static int16_t dig_T3;
static uint16_t dig_P1;
static int16_t dig_P2;
static int16_t dig_P3;
static int16_t dig_P4;
static int16_t dig_P5;
static int16_t dig_P6;
static int16_t dig_P7;
static int16_t dig_P8;
static int16_t dig_P9;
static int8_tdig_H1;
static int16_t dig_H2;
static int8_tdig_H3;
static int16_t dig_H4;
static int16_t dig_H5;
static int8_tdig_H6;
static signed long int temp_cal;
static unsigned long int press_cal,hum_cal;
static double temp_act;
static double press_act;
static double hum_act;

static void readCalibrationData()
{
    uint8_t data;
    read_bme280_reg(0x88, data, 24);
    read_bme280_reg(0xa1, data + 24, 1);
    read_bme280_reg(0xe1, data + 25, 7);

    dig_T1 = (data << 8) | data;
    dig_T2 = (data << 8) | data;
    dig_T3 = (data << 8) | data;
    dig_P1 = (data << 8) | data;
    dig_P2 = (data << 8) | data;
    dig_P3 = (data<< 8) | data;
    dig_P4 = (data<< 8) | data;
    dig_P5 = (data<< 8) | data;
    dig_P6 = (data<< 8) | data;
    dig_P7 = (data<< 8) | data;
    dig_P8 = (data<< 8) | data;
    dig_P9 = (data<< 8) | data;
    dig_H1 = data;
    dig_H2 = (data<< 8) | data;
    dig_H3 = data;
    dig_H4 = (data<< 4) | (0x0F & data);
    dig_H5 = (data << 4) | ((data >> 4) & 0x0F);
    dig_H6 = data;
}

static signed long int calibration_T(signed long int adc_T)
{

    signed long int var1, var2, T;
    var1 = ((((adc_T >> 3) - ((signed long int)dig_T1<<1))) * ((signed long int)dig_T2)) >> 11;
    var2 = (((((adc_T >> 4) - ((signed long int)dig_T1)) * ((adc_T>>4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14;

    t_fine = var1 + var2;
    T = (t_fine * 5 + 128) >> 8;
    return T;
}

static unsigned long int calibration_P(signed long int adc_P)
{
    signed long int var1, var2;
    unsigned long int P;
    var1 = (((signed long int)t_fine)>>1) - (signed long int)64000;
    var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed long int)dig_P6);
    var2 = var2 + ((var1*((signed long int)dig_P5))<<1);
    var2 = (var2>>2)+(((signed long int)dig_P4)<<16);
    var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13)) >>3) + ((((signed long int)dig_P2) * var1)>>1))>>18;
    var1 = ((((32768+var1))*((signed long int)dig_P1))>>15);
    if (var1 == 0)
    {
      return 0;
    }
    P = (((unsigned long int)(((signed long int)1048576)-adc_P)-(var2>>12)))*3125;
    if(P<0x80000000)
    {
       P = (P << 1) / ((unsigned long int) var1);
    }
    else
    {
      P = (P / (unsigned long int)var1) * 2;
    }
    var1 = (((signed long int)dig_P9) * ((signed long int)(((P>>3) * (P>>3))>>13)))>>12;
    var2 = (((signed long int)(P>>2)) * ((signed long int)dig_P8))>>13;
    P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4));
    return P;
}

static unsigned long int calibration_H(signed long int adc_H)
{
    signed long int v_x1;

    v_x1 = (t_fine - ((signed long int)76800));
    v_x1 = (((((adc_H << 14) -(((signed long int)dig_H4) << 20) - (((signed long int)dig_H5) * v_x1)) +
            ((signed long int)16384)) >> 15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) *
            (((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) *
            ((signed long int) dig_H2) + 8192) >> 14));
   v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4));
   v_x1 = (v_x1 < 0 ? 0 : v_x1);
   v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1);
   return (unsigned long int)(v_x1 >> 12);
}i2c读写接口封装
static int read_bme280_reg(rt_uint8_t reg_addr, rt_uint8_t *data, rt_uint8_t len)
{
    struct rt_i2c_msg msgs;
    msgs.addr = BME280_ADDR;
    msgs.flags = RT_I2C_WR;
    msgs.buf = &reg_addr;
    msgs.len = 1;

    msgs.addr = BME280_ADDR;
    msgs.flags = RT_I2C_RD;
    msgs.buf = data;
    msgs.len = len;

    if (rt_i2c_transfer(i2c_bus, msgs, 2) == 2)
    {
      return RT_EOK;
    }
    else
      return -RT_ERROR;
}

static int8_t write_bme280_reg(uint8_t reg, uint8_t *data, uint16_t len)
{
    rt_uint8_t tmp = reg;
    struct rt_i2c_msg msgs;

    msgs.addr= BME280_ADDR;                        /* Slave address */
    msgs.flags = RT_I2C_WR;                        /* Write flag */
    msgs.buf   = &tmp;                               /* Slave register address */
    msgs.len   = 1;                                  /* Number of bytes sent */

    msgs.addr= BME280_ADDR;                        /* Slave address */
    msgs.flags = RT_I2C_WR | RT_I2C_NO_START;      /* Read flag */
    msgs.buf   = data;                               /* Read data pointer */
    msgs.len   = len;                              /* Number of bytes read */

    if (rt_i2c_transfer(i2c_bus, msgs, 2) != 2)
    {
      return -RT_ERROR;
    }

    return RT_EOK;
}init_bme280用于初始化i2c设备
static int init_bme280(void){    i2c_bus = (struct rt_i2c_bus_device *) rt_device_find(BME280_I2C_BUS_NAME);    if (i2c_bus == RT_NULL)    {      rt_kprintf("can't find %s device!\n", BME280_I2C_BUS_NAME);      return RT_ERROR;    }    rt_uint8_t data;    int size = read_bme280_reg(0xD0, &data, 1);    rt_kprintf("bme280 device id : %x\n", data);    uint8_t osrs_t = 1;             //Temperature oversampling x 1    uint8_t osrs_p = 1;             //Pressure oversampling x 1    uint8_t osrs_h = 1;             //Humidity oversampling x 1    uint8_t mode = 3;               //Normal mode    uint8_t t_sb = 5;               //Tstandby 1000ms    uint8_t filter = 0;             //Filter off    uint8_t spi3w_en = 0;         //3-wire SPI Disable    uint8_t ctrl_meas_reg = (osrs_t4) - ((signed long int)dig_T1)) * ((adc_T>>4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14;    t_fine = var1 + var2;    T = (t_fine * 5 + 128) >> 8;    return T;}static unsigned long int calibration_P(signed long int adc_P){    signed long int var1, var2;    unsigned long int P;    var1 = (((signed long int)t_fine)>>1) - (signed long int)64000;    var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed long int)dig_P6);    var2 = var2 + ((var1*((signed long int)dig_P5))2)+(((signed long int)dig_P4)2)*(var1>>2)) >> 13)) >>3) + ((((signed long int)dig_P2) * var1)>>1))>>18;    var1 = ((((32768+var1))*((signed long int)dig_P1))>>15);    if (var1 == 0)    {      return 0;    }    P = (((unsigned long int)(((signed long int)1048576)-adc_P)-(var2>>12)))*3125;    if(P3) * (P>>3))>>13)))>>12;    var2 = (((signed long int)(P>>2)) * ((signed long int)dig_P8))>>13;    P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4));    return P;}static unsigned long int calibration_H(signed long int adc_H){    signed long int v_x1;    v_x1 = (t_fine - ((signed long int)76800));    v_x1 = (((((adc_H15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) *            (((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) *            ((signed long int) dig_H2) + 8192) >> 14));   v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4));   v_x1 = (v_x1 < 0 ? 0 : v_x1);   v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1);   return (unsigned long int)(v_x1 >> 12);}static int read_bme280_reg(rt_uint8_t reg_addr, rt_uint8_t *data, rt_uint8_t len){    struct rt_i2c_msg msgs;    msgs.addr = BME280_ADDR;    msgs.flags = RT_I2C_WR;    msgs.buf = &reg_addr;    msgs.len = 1;    msgs.addr = BME280_ADDR;    msgs.flags = RT_I2C_RD;    msgs.buf = data;    msgs.len = len;    if (rt_i2c_transfer(i2c_bus, msgs, 2) == 2)    {      return RT_EOK;    }    else      return -RT_ERROR;}static int8_t write_bme280_reg(uint8_t reg, uint8_t *data, uint16_t len){    rt_uint8_t tmp = reg;    struct rt_i2c_msg msgs;    msgs.addr= BME280_ADDR;                        /* Slave address */    msgs.flags = RT_I2C_WR;                        /* Write flag */    msgs.buf   = &tmp;                               /* Slave register address */    msgs.len   = 1;                                  /* Number of bytes sent */    msgs.addr= BME280_ADDR;                               /* Slave address */    msgs.flags = RT_I2C_WR | RT_I2C_NO_START;      /* Read flag */    msgs.buf   = data;                               /* Read data pointer */    msgs.len   = len;                              /* Number of bytes read */    if (rt_i2c_transfer(i2c_bus, msgs, 2) != 2)    {      return -RT_ERROR;    }    return RT_EOK;}static void readCalibrationData(){    uint8_t data;    read_bme280_reg(0x88, data, 24);    read_bme280_reg(0xa1, data + 24, 1);    read_bme280_reg(0xe1, data + 25, 7);    dig_T1 = (data
页: [1]
查看完整版本: FRDM-MCXN947开发板之i2c应用