开始还债,因为还有至少两个可写的重要话题依赖在这个系列上,不解决就难以前进。
目前我们已经涉及了五种不同的缓存实现,它们分别是:
- SimpleKeyCache:构造字符串作为Key,使用字典作为存储。
- PrefixTreeCache:使用前缀树进行存储。
- SortedListCache:使用排序列表或二叉搜索树进行存储。
- HashedListCache:先对表达式树取散列值,再从字典中取出二叉搜索树。
- DictionaryCache:实现了散列值和表达式树的比较方法,直接使用字典进行存储。
如果要从一个已经包含n个表达式树的存储中,查找一个有m个节点的表达式树,根据几篇文章的分析,从理论上说除了HashedListCache的时间复杂度是O(m * log(n))之外,其它几种实现的时间复杂度都是O(m)。不过,理论上的结果和实际使用中的效果完全符合吗?如果完全符合的话,那么我们在构建第一个SimpleKeyCache,获得了一种既简单直观又“高效”(达到了理论上最好的时间复杂度O(m))的实现之后为什么还要继续设计剩下的方案呢?如果您看完了文章还没有想到,这说明您的.NET编程“常识”还需要加强。
那么我们就写一个程序,让数据说话。
这是一个控制台应用程序,接受用户参数,并由此生成试验数据,或进行性能比较。
生成试验数据
需要进行测试,自然要准备试验数据,而这里所需要的试验数据自然是大量的表达式树。
表达式树的种类非常纷繁,如果要构造各种类型的树,其代价也是非常昂贵的。因此在这里,我们只构建所谓的“整数的四则运算”表达式进行试验。对于这样的表达式,每个运算符占用一个节点,每个数字又会占用另一个节点,因此表达式数的节点个数m便是操作符的个数p,与数字的个数q之和。而由于每个元算符都是二元运算符,因此p等于q - 1。于是我们就可以得出m与p之间的关系:知道了这个关系,我们便可以获得一定规模的试验数据。于是我们写一个简单的小程序来随机输出一个表达式:- private static void WriteSingleExpression(
- TextWriter writer, Random random, int opCount)
- {
- string ops = "+-*/";
- writer.Write(random.Next(100));
- while (opCount-- > 0)
- {
- writer.Write(" ");
- writer.Write(ops[random.Next(4)]);
- writer.Write(" ");
- writer.Write(random.Next(100));
- }
- writer.WriteLine();
- }
复制代码 这个方法的目的是向TextWriter中随机输出一个拥有opCount个运算符的表达式(可以得知,这个表达式树有m = 2 * opCount + 1个节点)。例如,当opCount等于11的时候,它可能就会生成这样一个表达式:- 82 / 6 - 76 * 75 - 33 / 32 * 56 + 47 + 3 + 22 * 5 + 63
复制代码 然后我们获取用户参数输入,并输出一系列随机的表达式:- private static void GenerateExpressions(NameValueCollection args)
- {
- string output = args["out"] ?? "expressions.txt";
- int min = Int32.Parse(args["min"] ?? "11");
- int max = Int32.Parse(args["max"] ?? (min + 9).ToString());
- int repeat = Int32.Parse(args["repeat"] ?? "100");
复制代码 以上代码的目的是获取用户参数,用户输入的参数将被解析为NameValueCollection,参数含义如下:
- output:输出文件
- min:最短表达式中的运算符数量
- max:最长表达式中的运算符数量
- repeat:每种长度的表达式重复次数
向文件输出所有的随机表达式便不是难事了:- Random random = new Random(DateTime.Now.Millisecond);
- using (var stream = File.Open(output, FileMode.Create))
- {
- StreamWriter writer = new StreamWriter(stream);
- for (int opCount = min; opCount <= max; opCount++)
- {
- for (int i = 0; i < repeat; i++)
- {
- WriteSingleExpression(writer, random, opCount);
- }
- }
- }
- }
复制代码 接着,准备5种缓存容器:- static void PerfTest(NameValueCollection args)
- {
- string intput = args["in"] ?? "expressions.txt";
- int repeat = Int32.Parse(args["repeat"] ?? "100");
复制代码 初始化CodeTimer:- List<Expression> expressions = File.ReadAllLines(intput).Select(
- s => DynamicExpression.Parse(null, s)).ToList();
复制代码 遍历字典中的每个缓存对象,将其放入缓存容器中。这段代码还有一个作用便是“热身”——请注意,对.NET中任意代码作性能测试时,都需要让它预运行一下。由于JIT的存在,一个方法第一次运行时所花时间总是较长的,这不应该统计在内:- var caches = new SortedDictionary<string, IExpressionCache<object>>()
- {
- { "1. SimpleKeyCache", new SimpleKeyCache<object>() },
- { "2. PrefixTreeCache", new PrefixTreeCache<object>() },
- { "3. SortedListCache", new SortedListCache<object>() },
- { "4. HashedListCache", new HashedListCache<object>() },
- { "5. DictionaryCache", new DictionaryCache<object>() },
- };
复制代码 最后,则是使用CodeTimer对当前缓存容器进行性能测试:PerfTest编写完毕,我们最后还需要指定一个函数的入口,如下:- var value = new object();
- foreach (var pair in caches)
- {
- var cache = pair.Value;
- expressions.ForEach(exp => cache.Get(exp, (_) => value));
复制代码 如果直接执行程序,便会创建一个expression.txt文件,其中包括操作符数量在11到20之间,每种表达式各100个。如果加上了task参数,并指定test字符串,便会进行性能比较。
比较结果
输入命令,便会使用expression.txt中的每个表达式各调用100次:- CodeTimer.Time(pair.Key, repeat,
- () => expressions.ForEach(exp => cache.Get(exp, null)));
- }
- }
复制代码 对于运算符数量为11到20的表达式各100个(即总共1000个表达式),各调用100次的结果如下(不过,请不要直接看结果,再想想,再想想):- static void Main(string[] args)
- {
- var arguments = ParseArguments(args);
- if (arguments["task"] == "test")
- {
- PerfTest(arguments);
- }
- else
- {
- GenerateExpressions(arguments);
- }
- }
复制代码 结果和您想象的是否一样?在老赵的机器上,这个结果还是相当稳定的,每次测试只差十几毫秒,而垃圾收集次数则完全一样。从这个数据中您看出什么来了吗?或者说,您能否回答以下几个问题呢?
- SimpleKeyCache的垃圾收集次数为什么明显较多?PrefixTreeCache为什么也有不少垃圾收集?
- SimpleKeyCache和PrefixTreeCache的时间复杂度都是理论最优值O(m),但是为什么它们却比不过SortedListCache这个理论上时间复杂度是O(m * log(n))的容器呢?
- 您能否设定一种用例,让SortedListCache的耗时超过PrefixTreeCache或SimpleKeyCache呢?
- HashedListCache为什么会超过SortedListCache,DictionaryCache的性能为什么也那么好呢(与HashedListCache不分伯仲,多次测试互有“胜负”)?
- DictionaryCache有一次1代的垃圾收集,这说明DictionaryCache消耗内存超过前些容器吗?
- SimpleKeyCache从时间和空间上看全面落后,那么他有什么好处吗?
- 您能为每种容器提出改进意见吗?
您是否还能提出更多问题?您能够在老赵发布下一篇文章讨论这些问题之前,在这里留言给出您对这些问题的看法呢?
完整代码下载:http://code.msdn.microsoft.com/ExpressionCache
相关文章:
- 谈表达式树的缓存(1):引言
- 谈表达式树的缓存(2):由表达式树生成字符串
- 谈表达式树的缓存(3):使用前缀树
- 谈表达式树的缓存(4):使用二叉搜索树(AVL树)
- 谈表达式树的缓存(5):引入散列值
- 谈表达式树的缓存(7):五种缓存方式的总体分析及改进方案
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |