CSDN热搜
因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。
\([+1]_原 = 0000 0001\) \([-1]_原 = 1000 0001\)
[1111 1111 ,0111 1111]
[-127 ,127]
\([+1] = [00000001]_原 = [00000001]_反\) \([-1] = [10000001]_原 = [11111110]_反\)
\([+1] = [00000001]_原 = [00000001]_反 = [00000001]_补\) \([-1] = [10000001]_原 = [11111110]_反 = [11111111]_补\)
\([+1] = [00000001]_原 = [00000001]_反 = [00000001]_补\)
\([-1] = [10000001]_原 = [11111110]_反 = [11111111]_补\)
\(1 - 1 = 1 + (-1) = [00000001]_原 + [10000001]_原 = [10000010]_原 = -2\)
\(1 - 1 = 1 + (-1) = [0000 0001]_原 + [1000 0001]_原 = [0000 0001]_反 + [1111 1110]_反 = [1111 1111]_反 = [1000 0000]_原 = -0\)
\(1-1 = 1 + (-1) = [0000 0001]_原 + [1000 0001]_原 = [0000 0001]_补 + [1111 1111]_补 = [0000 0000]_补 =[0000 0000]_原\)
\((-1) + (-127) = [1000 0001]_原 + [1111 1111]_原 = [1111 1111]_补 + [1000 0001]_补 = [1000 0000]_补\)
遗留问题:存在正负两种0数值 +0:\([0000 0000]_反\) -0:\([1000 0000]_反\)
\([0000 0000]_补\):0 \([1000 0000]_补\):-128
往回拨2个小时:\(6 - 2 = 4\) 往前拨10个小时:\((6 + 10) \pmod {12} = 4\) 往前拨10+12=22个小时:\((6+22) \pmod {12} =4\)
\(4 \pmod {12} = 4\) \(16 \pmod {12} = 4\) \(28 \pmod {12} = 4\)
\[x \pmod y = x - y ⌊ x / y ⌋\]
-3 mod 2 = -3 - 2 x ⌊-3/2⌋ = -3 - 2 x ⌊-1.5⌋ = -3 - 2 x (-2) = -3 + 4 = 1
(-2) mod 12 = 12-2=10 (-4) mod 12 = 12-4 = 8 (-5) mod 12 = 12 - 5 = 7
回拨2小时 = 前拨10小时 回拨4小时 = 前拨8小时 回拨5小时= 前拨7小时
\((-2) \pmod {12} = 10\) \(10 \pmod {12} = 10\)
\((-4) \pmod {12} = 8\) \(8 \pmod {12} = 8\)
\(a ≡ a \pmod m\)
如果\(a ≡ b \pmod m\),\(c ≡ d \pmod m\) 那么: (1)\(a ± c ≡ b ± d \pmod m\) (2)\(a * c ≡ b * d \pmod m\)
\(7 ≡ 7 \pmod {12}\) \((-2) ≡ 10 \pmod {12}\) \(7 -2 ≡ 7 + 10 \pmod {12}\)
\(2-1=2+(-1) = [0000 0010]_原 + [1000 0001] _原 = [0000 0010]_反 + [1111 1110]_反\)
\((-1) \pmod {127} = 126\) \(126 \pmod {127} = 126\)
\((-1) ≡ 126 \pmod {127}\) \(2-1 ≡ 2+126 \pmod {127}\)
\(2-1=2+(-1) = [0000 0010]_原 + [1000 0001]_原 = [0000 0010]_补 + [1111 1111]_补\)
\([0111 1111]_原 = 127\)
\((-1) \pmod {128} = 127\) \(127 \pmod {128} = 127\) \(2-1 ≡ 2+127 \pmod {128}\)
本文参考:https://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html
使用道具 举报
本版积分规则 回帖并转播 回帖后跳转到最后一页
程序园优秀签约作者
0
粉丝关注
15
主题发布