P5788 【模板】单调栈
传送门
题目描述
给出项数为 \(n\) 的整数数列 \(a_{1 \dots n}\)。
定义函数 \(f(i)\) 代表数列中第 \(i\) 个元素之后第一个大于 \(a_i\) 的元素的下标,即 \(f(i)=\min_{i a_i} \{j\}\)。若不存在,则 \(f(i)=0\)。
试求出 \(f(1\dots n)\)。
输入格式
第一行一个正整数 \(n\)。
第二行 \(n\) 个正整数 \(a_{1\dots n}\)。
输出格式
一行 \(n\) 个整数表示 \(f(1), f(2), \dots, f(n)\) 的值。
样例 #1
样例输入 #1
样例输出 #1
提示
【数据规模与约定】
对于 \(30\%\) 的数据,\(n\leq 100\);
对于 \(60\%\) 的数据,\(n\leq 5 \times 10^3\) ;
对于 \(100\%\) 的数据,\(1 \le n\leq 3\times 10^6\),\(1\leq a_i\leq 10^9\)。
前要芝士:单调栈
什么是单调栈:
单调栈:顾名思义,单调栈即满足单调性的栈结构。
简单来说,就是栈内的数一直保持递增或递减的关系。
实现:
插入: 每次插入时为保证栈内递增或递减,我们将栈顶的元素不断与将插入的数进行比较,如果不能符合数字插入后保持递增或递减,就将栈顶元素删除。这样可以有效保证栈内保持单调性,这就是单调队列的插入操作。
我们可以使用如下代码模拟插入(以单调递增为例):
[code]scanf("%d")while(!q.empty()&&q.top() |