在数学教学和科普领域,变形效果往往能起到事半功倍的作用,让抽象的数学概念变得生动形象。
这篇文章将通过三个典型场景,来看看如何超越默认效果的限制,制作出更专业的变形动画。
1. 几何体的形态跃迁
传统形状变化往往生硬,而通过组合Transform与样式动画,我们可以创造更丰富的视觉效果:- class ShapeTransformation(Scene):
- def construct(self):
- # 创建带描边的起始图形
- circle = Circle(radius=1, color=BLUE, stroke_width=8)
- circle.set_fill(BLUE_E, opacity=0.5)
- circle.shift(LEFT * 2)
- # 准备目标图形并设置不同位置
- square = Square(side_length=2, color=RED)
- square.shift(RIGHT * 2 + UP)
- # 同步执行形态变换和颜色渐变
- self.play(
- Transform(circle.copy(), square, path_arc=90 * DEGREES),
- circle.animate.set_color(YELLOW).shift(RIGHT * 4 + DOWN),
- run_time=3,
- )
- self.wait()
复制代码 代码中,我们使用path_arc参数让变形路径呈现优美的弧线运动;
并且颜色与位置变化与形态变形同步进行;
一个图形(圆形)同时转换成两个图形(一个圆形,一个正方形)。
2. 坐标系的魔法转换
数学场景转换需要兼顾坐标系和图形,ReplacementTransform可以完美处理这种复合变换。- class CoordinateTransform(Scene):
- def construct(self):
- # 创建笛卡尔坐标系
- cartesian = Axes(x_range=[-3,3], y_range=[-2,2])
- graph1 = cartesian.plot(lambda x: np.sin(x), color=GREEN)
-
- # 准备极坐标系
- polar = PolarPlane(radius_max=2).scale(0.8)
- graph2 = polar.plot(lambda t: 1+np.cos(3*t), color=YELLOW)
-
- # 组合变换:坐标系与函数曲线同时替换
- self.play(
- ReplacementTransform(cartesian, polar),
- ReplacementTransform(graph1, graph2),
- run_time=2
- )
- # 增强效果:坐标轴颜色渐变
- self.play(polar.animate.set_color(BLUE_C), run_time=1.5)
- self.wait()
复制代码 代码中核心功能在于:
- 同时替换坐标系和函数曲线保持场景一致性
- 使用scale调整坐标系比例确保平滑过渡
- 后期添加颜色动画强化视觉效果
3. 参数驱动的动态变化
下面通过UpdateFromAlphaFunc实现参数连续变化效果,函数图像变化的过程中同步更新参数值显示。
并且在函数图像变化的过程中,通过颜色插值interpolate_color函数,使得颜色随参数变化渐变(从绿色变成黄色)。- class ParameterTransformation(Scene):
- def construct(self):
- axes = Axes(
- x_range=[-3 * PI, 3 * PI, PI],
- y_range=[-3, 3, 1],
- axis_config={"color": WHITE},
- )
- # 参数连续变化(动态展示a从1到2)
- param_label = MathTex(r"y = a\sin(x)").to_edge(UP).shift(LEFT)
- self.add(param_label, axes)
- a_label = MathTex("a=")
- a_value = DecimalNumber(1, num_decimal_places=1).next_to(a_label, RIGHT)
- vg = VGroup(a_label, a_value).next_to(param_label, DOWN)
- self.add(param_label, axes, vg)
- # 创建可变的函数曲线
- def update_func(mob, alpha):
- a = interpolate(1, 2, alpha)
- new_func = axes.plot(
- lambda x: a * np.sin(x), color=interpolate_color(GREEN, YELLOW, alpha)
- )
- mob.become(new_func)
- a_value.set_value(a)
- dynamic_func = axes.plot(lambda x: 1 * np.sin(x), color=GREEN)
- self.add(dynamic_func, a_value)
- self.play(
- UpdateFromAlphaFunc(dynamic_func, update_func, rate_func=linear, run_time=3)
- )
- self.wait()
复制代码 显示效果如下:
4. 总结
使用Manim的Transform和ReplacementTransform实现数学图形动态变形。
比如,圆变方、正弦函数振幅连续变化等等,结合颜色插值与参数数值同步更新,直观演示参数对图形的影响。
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |