一、环境说明
开发环境部署环境操作系统Windows10Centos7.9Go版本go version go1.24.2 windows/amd64go version go1.23.6 linux/amd64插件版本Master分支Docker版本Docker version 26.1.4, build 5650f9bk8s版本v1.28.0 (minikube)补充说明:
k8s环境是由minikube创建,CRI为docker,如果CRI为Containerd,也不影响,后面会说明如何部署。
二、开发
本次开发是在scheduler-plugins源码基础上进行开发。
通过上图可以看到,Filter和Score是两个核心,一般开发也是围绕着Filter和Score。
首先需要把scheduler-plugins的源码下载到本地,直接使用git进行拉取即可。- git clone https://github.com/kubernetes-sigs/scheduler-plugins.git
复制代码 当然如果对版本有特定要求,请根据官方提供的readme进行分支切换。
插件的代码都放在pkg目录下, 现在需要自定义一个插件,当然也是在pkg目录下进行开发。
pkg目录下创建一个新的目录,比如叫prefernode,在prefernode目录下创建创建prefernode.go文件。
接下来就可以在prefernode.go里编写自定义调度器的核心逻辑了。
假如现在想让所有使用自定义调度器的pod都调度到指定的某个节点上,这里直接实现Score。- package prefernode1
- import (
- "context"
- v1 "k8s.io/api/core/v1"
- "k8s.io/kubernetes/pkg/scheduler/framework"
- "k8s.io/apimachinery/pkg/runtime"
- "k8s.io/klog/v2"
- )
- const Name = "PreferNode"
- type PreferNode struct {
- handle framework.Handle
- }
- func (p *PreferNode) Name() string {
- return Name
- }
- func (p *PreferNode) Score(_ context.Context, _ *framework.CycleState, pod *v1.Pod, nodeName string) (int64, *framework.Status) {
- klog.V(5).Infof("Scoring pod %s on node %s", pod.Name, nodeName)
- if nodeName == "minikube-m03" {
- return 100, nil
- }
- return 0, nil
- }
- func (p *PreferNode) ScoreExtensions() framework.ScoreExtensions {
- return nil
- }
- func New(_ context.Context, _ runtime.Object, _ framework.Handle) (framework.Plugin, error) {
- return &PreferNode{}, nil
- }
复制代码 以上代码,已经实现了具体需求,将所有使用我们自定义插件的Pod都调度到某个节点上。这里指定的是"minikube-m03"。
插件核心代码写好了,还需要进行注册,让框架知道我们是现在自定义插件。
返回项目根目录,进入到cmd/scheduler,编辑main.go,在command中进行注册。- func main() {
- // Register prefernode1 plugins to the scheduler framework.
- // Later they can consist of scheduler profile(s) and hence
- // used by various kinds of workloads.
- command := app.NewSchedulerCommand(
- app.WithPlugin(capacityscheduling.Name, capacityscheduling.New),
- app.WithPlugin(coscheduling.Name, coscheduling.New),
- app.WithPlugin(loadvariationriskbalancing.Name, loadvariationriskbalancing.New),
- app.WithPlugin(networkoverhead.Name, networkoverhead.New),
- app.WithPlugin(topologicalsort.Name, topologicalsort.New),
- app.WithPlugin(noderesources.AllocatableName, noderesources.NewAllocatable),
- app.WithPlugin(noderesourcetopology.Name, noderesourcetopology.New),
- app.WithPlugin(preemptiontoleration.Name, preemptiontoleration.New),
- app.WithPlugin(targetloadpacking.Name, targetloadpacking.New),
- app.WithPlugin(lowriskovercommitment.Name, lowriskovercommitment.New),
- app.WithPlugin(sysched.Name, sysched.New),
- app.WithPlugin(peaks.Name, peaks.New),
- // Sample plugins below.
- // app.WithPlugin(crossnodepreemption.Name, crossnodepreemption.New),
- app.WithPlugin(podstate.Name, podstate.New),
- app.WithPlugin(qos.Name, qos.New),
- // 这是我们自定义的插件
- app.WithPlugin(prefernode.Name, prefernode.New),
- )
- code := cli.Run(command)
- os.Exit(code)
- }
复制代码 到此,开发完成。
如果你觉得上面的实现比较简陋,当然了,这里也提供一个同时实现Filter和Score的插件。- package prefernode
- import (
- "k8s.io/kubernetes/pkg/scheduler/framework"
- "context"
- "k8s.io/api/core/v1"
- "k8s.io/klog/v2"
- "fmt"
- "sort"
- "k8s.io/apimachinery/pkg/runtime"
- )
- const Name = "PreferNode"
- type PreferNode struct {
- handler framework.Handle
- }
- func (p *PreferNode) Name() string {
- return Name
- }
- // Filter 实现预选逻辑
- func (p *PreferNode) Filter(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeInfo *framework.NodeInfo) *framework.Status {
- if nodeInfo == nil || nodeInfo.Node() == nil {
- klog.Error("@@@ node not found @@@")
- return framework.NewStatus(framework.Error, "node not found")
- }
- node := nodeInfo.Node()
- klog.V(4).Infof("prefernode filter pod %s/%s:%s", pod.Namespace, pod.Name, node.Name)
- // 检查节点是否可调度
- if node.Spec.Unschedulable {
- klog.V(4).Infof("Node %s is unschedulable", node.Name)
- return framework.NewStatus(framework.Unschedulable, "node is unschedulable")
- }
- // 检查节点是否有足够的资源
- podRequest := calculatePodResourceRequest(pod)
- nodeAllocatable := node.Status.Allocatable
- cpuAvailable := nodeAllocatable.Cpu().MilliValue()
- memAvailable := nodeAllocatable.Memory().MilliValue()
- if cpuAvailable < podRequest.cpu {
- klog.V(4).Infof("Node %s doesn't have enough CPU: required %d, available: %d", node.Name, podRequest.cpu, cpuAvailable)
- return framework.NewStatus(framework.Unschedulable, "Insufficient CPU")
- }
- if memAvailable < podRequest.memory {
- klog.V(4).Infof("Node %s doesn't have enough Memory: required %d, available: %d", node.Name, podRequest.memory, memAvailable)
- return framework.NewStatus(framework.Unschedulable, "Insufficient Memory")
- }
- // 检查节点标签是否匹配
- if pod.Spec.NodeSelector != nil {
- for key, value := range pod.Spec.NodeSelector {
- nodeValue, exists := node.Labels[key]
- if !exists || nodeValue != value {
- klog.V(4).Infof("Node %s does not have label %s=%s", node.Name, key, value)
- return framework.NewStatus(framework.Unschedulable, "Insufficient Label")
- }
- }
- }
- klog.V(4).Infof("Node %s passed all filters for pod %s/%s", node.Name, pod.Namespace, pod.Name)
- return framework.NewStatus(framework.Success, "")
- }
- func (p *PreferNode) Score(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (int64, *framework.Status) {
- klog.V(4).Infof("Scoring pod %s/%s on node %s", pod.Namespace, pod.Name, nodeName)
- nodeInfo, err := p.handler.SnapshotSharedLister().NodeInfos().Get(nodeName)
- if err != nil {
- klog.Errorf("Error getting node %s from snapshot: %v", nodeName, err)
- return 0, framework.NewStatus(framework.Error, fmt.Sprintf("getting node %s from snapshot: %v", nodeName, err))
- }
- node := nodeInfo.Node()
- // 基础分 - 考虑节点负载和可用资源
- score := int64(0)
- // 1、计算CPU得分 - 优先选择CPU资源充足的节点
- cpuCapacity := node.Status.Capacity.Cpu().MilliValue()
- cpuAllocatable := node.Status.Allocatable.Cpu().MilliValue()
- cpuUsed := cpuCapacity - cpuAllocatable
- // 计算cpu使用率
- var cpuUtilization float64
- if cpuCapacity > 0 {
- cpuUtilization = float64(cpuUsed) / float64(cpuCapacity)
- }
- // CPU得分,使用率越低得分越高,最高40分
- cpuScore := int64((1 - cpuUtilization) * 40)
- // 2、计算内存得分 - 优先选择内存资源充足的节点
- memCapacity := node.Status.Capacity.Memory().Value()
- memAllocatable := node.Status.Allocatable.Memory().Value()
- memUsed := memCapacity - memAllocatable
- // 计算内存使用率
- var memUtilization float64
- if memCapacity > 0 {
- memUtilization = float64(memUsed) / float64(memCapacity)
- }
- // 内存得分, 使用率越低得分越高,最高40分
- memScore := int64((1 - memUtilization) * 40)
- // 2、节点标签偏好得分
- labelScore := int64(0)
- // 检查是否有特定角色标签
- if value, exits := node.Labels["kubernetes.io/role"]; exits && value == "worker" {
- labelScore += 10
- }
- if nodeName == "minikube-m03" {
- labelScore += 10
- }
- // 计算总分
- score = cpuScore + memScore + labelScore
- klog.V(3).Infof("Score for pod %s/%s on node %s: %d (CPU: %d, Memory: %d, Labels: %d)",
- pod.Namespace, pod.Name, nodeName, score, cpuScore, memScore, labelScore)
- return score, nil
- }
- // ScoreExtensions 返回扩展接口
- func (p *PreferNode) ScoreExtensions() framework.ScoreExtensions {
- return p
- }
- // NormalizeScore 实现分数归一化
- func (p *PreferNode) NormalizeScore(ctx context.Context, state *framework.CycleState, pod *v1.Pod, scores framework.NodeScoreList) *framework.Status {
- // 找出最高分和最低分
- var highest int64
- var lowest = framework.MaxNodeScore
- for _, nodeScore := range scores {
- if nodeScore.Score > highest {
- highest = nodeScore.Score
- }
- if nodeScore.Score < lowest {
- lowest = nodeScore.Score
- }
- }
- klog.V(4).Infof("Score range for pod %s/%s: [%d, %d]", pod.Namespace, pod.Name, lowest, highest)
- // 如果所有节点得分相同,则不需要归一化
- if highest == lowest{
- klog.V(4).Infof("No need to normalize scores as all nodes have the same score")
- return nil
- }
- // 归一化分数到0-100范围
- for i := range scores{
- scores[i].Score = framework.MaxNodeScore * (scores[i].Score - lowest) / (highest - lowest)
- klog.V(4).Infof("Normalized score for node %s:%d",scores[i].Name,scores[i].Score)
- }
- // 按分数排序,记录结果
- sortedScores := make(framework.NodeScoreList, len(scores))
- copy(sortedScores, scores)
- sort.Slice(sortedScores, func(i,j int) bool {
- return sortedScores[i].Score > sortedScores[j].Score
- })
- klog.V(3).Infof("Final scores for pod %s/%s",pod.Namespace,pod.Name)
- for i, nodeScroe := range sortedScores {
- klog.V(5).Infof("@@@ %d. Node %s: %d",i+1, nodeScroe.Name,nodeScroe.Score)
- }
- return nil
- }
- // 资源请求结构体
- type resourceRequest struct {
- cpu int64
- memory int64
- }
- // 计算Pod资源请求
- func calculatePodResourceRequest(pod *v1.Pod) resourceRequest {
- result := resourceRequest{}
- for _, container := range pod.Spec.Containers {
- if container.Resources.Requests != nil {
- result.cpu += container.Resources.Requests.Cpu().MilliValue()
- result.memory += container.Resources.Requests.Memory().Value()
- }
- }
- // 如果没有明确指定资源请求,使用默认值
- if result.cpu == 0 {
- result.cpu = 100 // 默认100m CPU
- }
- if result.memory == 0 {
- result.memory = 256 * 1024 * 1024 // 默认256Mi
- }
- return result
- }
- // New 创建一个新的PreferNode插件实例
- func New(_ context.Context, _ runtime.Object, h framework.Handle) (framework.Plugin, error) {
- return &PreferNode{
- handler: h,
- }, nil
- }
复制代码 三、部署
开发完成后,在编译环境中进行编译。
进入到scheduler-plugins目录下,直接运行make。- # make
- go build -ldflags '-X k8s.io/component-base/version.gitVersion=v0.32.5 -w' -o bin/controller cmd/controller/controller.go
- go build -ldflags '-X k8s.io/component-base/version.gitVersion=v0.32.5 -w' -o bin/kube-scheduler cmd/scheduler/main.go
复制代码 可以看到编译好的文件放到了同级的bin/目录下,我们需要使用的是kube-scheduler。
现在需要将我们的插件编译成Docker镜像。- FROM debian:bullseye-slim
- COPY bin/kube-scheduler /usr/local/bin/kube-scheduler
- RUN chmod +x /usr/local/bin/kube-scheduler
- ENTRYPOINT ["/usr/local/bin/kube-scheduler"]
复制代码 执行命令进行编译,假如镜像名就叫custom-scheduler:v1.0- docker build -t custom-scheduler:v1.0 .
复制代码 注意,这块需要补充一下,如果集群的容器使用containerd,则需要将docker镜像能让contained使用。
可以直接使用docker将镜像打包成tar,然后使用ctr解包。需要格外注意的是ctr需要指定-n命名空间,不然k8s识别不到。- docker save -o image.tar custom-scheduler:v1.0
- ctr -n=k8s.io -images import image.tar
复制代码 或者使用私有仓库。
镜像准备就绪后,就可以进行下一步操作了。将进行部署到k8s集群中。
这里不得不在提k8s环境了,我的环境是minikube起的,并且多节点,所以需要将镜像导入到minikube中,如果你使用的是kind,也需要进行类似的操作。- minikube image load custom-scheduler:v1.0
复制代码 加载完成后,可以使用minikube image ls检查一下。
接下来需要创建configmap,先创建scheduler-config.yaml。注意:如果使用简陋版的,则不需要配置filter。- apiVersion: kubescheduler.config.k8s.io/v1
- kind: KubeSchedulerConfiguration
- clientConnection:
- kubeconfig: "/etc/kubernetes/kubeconfig"
- leaderElection:
- leaderElect: false
- profiles:
- - schedulerName: custom-scheduler
- plugins:
- filter:
- enabled:
- - name: PreferNode
- score:
- enabled:
- - name: PreferNode
复制代码 同时需要准备kubeconfig文件,这个文件可以在.kube下找到。同样为了方便,生成到当前目录下。- kubectl config view --flatten --minify > scheduler.kubeconfig
复制代码 现在就可以创建configMap和Secret了。(其实完全可以创建两个configMap)
创建configMap和secret。- kubectl create configmap scheduler-config \
- --from-file=scheduler-config.yaml=scheduler-config.yaml \
- -n kube-system
- kubectl create secret generic scheduler-kubeconfig \
- --from-file=kubeconfig=scheduler.kubeconfig \
- -n kube-system
复制代码 RBAC准入这块也需要进行设置。- apiVersion: v1
- kind: ServiceAccount
- metadata:
- name: custom-scheduler
- namespace: kube-system
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRoleBinding
- metadata:
- name: custom-scheduler-rolebinding
- roleRef:
- apiGroup: rbac.authorization.k8s.io
- kind: ClusterRole
- name: system:kube-scheduler
- subjects:
- - kind: ServiceAccount
- name: custom-scheduler
- namespace: kube-system
复制代码 到此为止,部署的准备工作基本完成了,接下来就是部署自定义调度器了。- apiVersion: apps/v1
- kind: Deployment
- metadata:
- name: custom-scheduler
- namespace: kube-system
- spec:
- replicas: 1
- selector:
- matchLabels:
- component: custom-scheduler
- template:
- metadata:
- labels:
- component: custom-scheduler
- spec:
- serviceAccountName: custom-scheduler
- containers:
- - name: custom-scheduler
- image: docker.io/library/custom-scheduler:v1.0
- args:
- - --config=/etc/kubernetes/scheduler-config.yaml
- - --v=5
- volumeMounts:
- - name: scheduler-config
- mountPath: /etc/kubernetes/scheduler-config.yaml
- subPath: scheduler-config.yaml
- - name: scheduler-kubeconfig
- mountPath: /etc/kubernetes/kubeconfig
- subPath: kubeconfig
- volumes:
- - name: scheduler-config
- configMap:
- name: scheduler-config
- - name: scheduler-kubeconfig
- secret:
- secretName: scheduler-kubeconfig
复制代码 部署完成后,查看pod的运行状况。
四、测试
这里提交一个简单的pod进行测试- apiVersion: v1
- kind: Pod
- metadata:
- name: test-pod
- spec:
- schedulerName: custom-scheduler
- containers:
- - name: nginx
- image: nginx:1.17.1
复制代码 查看,可以发现pod被调度到m03节点上了。- kubectl get pod -o wide
- NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
- test-pod 1/1 Running 0 37m 10.96.151.14 minikube-m03 <none> <none>
复制代码 同样可以查看下自定义调度器的日志。可以看到03节点得了100分。- ...
- I0607 08:46:21.638574 1 prefernode.go:31] prefernode filter pod default/test-pod:minikube
- I0607 08:46:21.638587 1 prefernode.go:67] Node minikube passed all filters for pod default/test-pod
- I0607 08:46:21.638597 1 prefernode.go:31] prefernode filter pod default/test-pod:minikube-m02
- I0607 08:46:21.638603 1 prefernode.go:67] Node minikube-m02 passed all filters for pod default/test-pod
- I0607 08:46:21.638610 1 prefernode.go:31] prefernode filter pod default/test-pod:minikube-m03
- I0607 08:46:21.638614 1 prefernode.go:67] Node minikube-m03 passed all filters for pod default/test-pod
- I0607 08:46:21.638759 1 prefernode.go:72] Scoring pod default/test-pod on node minikube
- I0607 08:46:21.638770 1 prefernode.go:128] Score for pod default/test-pod on node minikube: 80 (CPU: 40, Memory: 40, Labels: 0)
- I0607 08:46:21.638782 1 prefernode.go:72] Scoring pod default/test-pod on node minikube-m02
- I0607 08:46:21.638787 1 prefernode.go:128] Score for pod default/test-pod on node minikube-m02: 80 (CPU: 40, Memory: 40, Labels: 0)
- I0607 08:46:21.638797 1 prefernode.go:72] Scoring pod default/test-pod on node minikube-m03
- I0607 08:46:21.638808 1 prefernode.go:128] Score for pod default/test-pod on node minikube-m03: 90 (CPU: 40, Memory: 40, Labels: 10)
- I0607 08:46:21.638838 1 prefernode.go:154] Score range for pod default/test-pod: [80, 90]
- I0607 08:46:21.638844 1 prefernode.go:165] Normalized score for node minikube:0
- I0607 08:46:21.638847 1 prefernode.go:165] Normalized score for node minikube-m02:0
- I0607 08:46:21.638850 1 prefernode.go:165] Normalized score for node minikube-m03:100
- I0607 08:46:21.638857 1 prefernode.go:175] Final scores for pod default/test-pod
- I0607 08:46:21.638861 1 prefernode.go:177] @@@ 1. Node minikube-m03: 100
- I0607 08:46:21.638864 1 prefernode.go:177] @@@ 2. Node minikube: 0
- I0607 08:46:21.638867 1 prefernode.go:177] @@@ 3. Node minikube-m02: 0
- ...
复制代码 来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |