声明:本篇文章仅用于知识分享,不得用于其他用途
网址:aHR0cDovL3d3dy4xNXl1bm1hbGwuY29tL3BjL2xvZ2luL2luZGV4
加密逻辑
- 随便输入用户名和密码登录,抓流量包。
- 这里看着两个参数都是加密的,但是你用同样的用户名和密码登录,会发现只有u[password]是变动的。
- 全局搜索password关键字,有很多处,但是可以明显的看到加密函数的有两处,是rsa加密。
- 不能判断是哪一处,全部打上断点,触发流量包。
- 这里面涉及三个函数:RSAKey,setPublic,encrypt,且公钥还是个定值,再细看下这三个函数的位置,都是同一个文件下。
细心的人会看到文件名叫做rsa.js,说明整个文件都是rsa算法相关的,全部拷出来。
运行一下,会报BigInteger未定义的错误。
- 找到BigInteger的定义位置。
还能看到文件置顶的注释说依赖jsbn.js和rng.js两个文件,对应上了。
- 一样的操作,将jsbn.js中的内容全部拷贝出来。
运行一下,会报navigator未定义的错误。
非常简单,只需在报错的位置上面添加var navigator = {}一行代码即可。再次运行,会报SecureRandom未定义的错误,找到定义处。
- 将rng.js中的代码全部拷贝出来,注意有先后顺序,rng.js的代码要放到jsbn.js的代码下面,否则会报navigator未定义的错误,或者可以将navigator定义到最上面。运行一下,说rng_psize未定义。
- 从rng.js上面的注释可以看到需要一个PRNG backend,依赖prng4.js。
全局搜索rng_psize,总共4处,三处位于rng.js文件内,一处位于prng4.js,还是个定值。一样的操作把prng4.js中的代码全部拷贝出来。运行一下,成功得到加密后的值。
- 由于该网页现在注册需要判断推荐人手机号,没法验证,只需搞懂相关逻辑即可。
- 完整代码如下。
- // prng4.js - uses Arcfour as a PRNG
- function Arcfour() {
- this.i = 0;
- this.j = 0;
- this.S = new Array();
- }
- // Initialize arcfour context from key, an array of ints, each from [0..255]
- function ARC4init(key) {
- var i, j, t;
- for(i = 0; i < 256; ++i)
- this.S[i] = i;
- j = 0;
- for(i = 0; i < 256; ++i) {
- j = (j + this.S[i] + key[i % key.length]) & 255;
- t = this.S[i];
- this.S[i] = this.S[j];
- this.S[j] = t;
- }
- this.i = 0;
- this.j = 0;
- }
- function ARC4next() {
- var t;
- this.i = (this.i + 1) & 255;
- this.j = (this.j + this.S[this.i]) & 255;
- t = this.S[this.i];
- this.S[this.i] = this.S[this.j];
- this.S[this.j] = t;
- return this.S[(t + this.S[this.i]) & 255];
- }
- Arcfour.prototype.init = ARC4init;
- Arcfour.prototype.next = ARC4next;
- // Plug in your RNG constructor here
- function prng_newstate() {
- return new Arcfour();
- }
- // Pool size must be a multiple of 4 and greater than 32.
- // An array of bytes the size of the pool will be passed to init()
- var rng_psize = 256;
- // Copyright (c) 2005 Tom Wu
- // All Rights Reserved.
- // See "LICENSE" for details.
- // Basic JavaScript BN library - subset useful for RSA encryption.
- // Bits per digit
- var dbits;
- // JavaScript engine analysis
- var canary = 0xdeadbeefcafe;
- var j_lm = ((canary&0xffffff)==0xefcafe);
- // (public) Constructor
- function BigInteger(a,b,c) {
- if(a != null)
- if("number" == typeof a) this.fromNumber(a,b,c);
- else if(b == null && "string" != typeof a) this.fromString(a,256);
- else this.fromString(a,b);
- }
- // return new, unset BigInteger
- function nbi() { return new BigInteger(null); }
- // am: Compute w_j += (x*this_i), propagate carries,
- // c is initial carry, returns final carry.
- // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
- // We need to select the fastest one that works in this environment.
- // am1: use a single mult and divide to get the high bits,
- // max digit bits should be 26 because
- // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
- function am1(i,x,w,j,c,n) {
- while(--n >= 0) {
- var v = x*this[i++]+w[j]+c;
- c = Math.floor(v/0x4000000);
- w[j++] = v&0x3ffffff;
- }
- return c;
- }
- // am2 avoids a big mult-and-extract completely.
- // Max digit bits should be <= 30 because we do bitwise ops
- // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
- function am2(i,x,w,j,c,n) {
- var xl = x&0x7fff, xh = x>>15;
- while(--n >= 0) {
- var l = this[i]&0x7fff;
- var h = this[i++]>>15;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
- c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
- w[j++] = l&0x3fffffff;
- }
- return c;
- }
- // Alternately, set max digit bits to 28 since some
- // browsers slow down when dealing with 32-bit numbers.
- function am3(i,x,w,j,c,n) {
- var xl = x&0x3fff, xh = x>>14;
- while(--n >= 0) {
- var l = this[i]&0x3fff;
- var h = this[i++]>>14;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x3fff)<<14)+w[j]+c;
- c = (l>>28)+(m>>14)+xh*h;
- w[j++] = l&0xfffffff;
- }
- return c;
- }
- var navigator = {};
- if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
- BigInteger.prototype.am = am2;
- dbits = 30;
- }
- else if(j_lm && (navigator.appName != "Netscape")) {
- BigInteger.prototype.am = am1;
- dbits = 26;
- }
- else { // Mozilla/Netscape seems to prefer am3
- BigInteger.prototype.am = am3;
- dbits = 28;
- }
- BigInteger.prototype.DB = dbits;
- BigInteger.prototype.DM = ((1<<dbits)-1);
- BigInteger.prototype.DV = (1<<dbits);
- var BI_FP = 52;
- BigInteger.prototype.FV = Math.pow(2,BI_FP);
- BigInteger.prototype.F1 = BI_FP-dbits;
- BigInteger.prototype.F2 = 2*dbits-BI_FP;
- // Digit conversions
- var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
- var BI_RC = new Array();
- var rr,vv;
- rr = "0".charCodeAt(0);
- for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
- rr = "a".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- rr = "A".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- function int2char(n) { return BI_RM.charAt(n); }
- function intAt(s,i) {
- var c = BI_RC[s.charCodeAt(i)];
- return (c==null)?-1:c;
- }
- // (protected) copy this to r
- function bnpCopyTo(r) {
- for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
- r.t = this.t;
- r.s = this.s;
- }
- // (protected) set from integer value x, -DV <= x < DV
- function bnpFromInt(x) {
- this.t = 1;
- this.s = (x<0)?-1:0;
- if(x > 0) this[0] = x;
- else if(x < -1) this[0] = x+DV;
- else this.t = 0;
- }
- // return bigint initialized to value
- function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
- // (protected) set from string and radix
- function bnpFromString(s,b) {
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 256) k = 8; // byte array
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else { this.fromRadix(s,b); return; }
- this.t = 0;
- this.s = 0;
- var i = s.length, mi = false, sh = 0;
- while(--i >= 0) {
- var x = (k==8)?s[i]&0xff:intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-") mi = true;
- continue;
- }
- mi = false;
- if(sh == 0)
- this[this.t++] = x;
- else if(sh+k > this.DB) {
- this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
- this[this.t++] = (x>>(this.DB-sh));
- }
- else
- this[this.t-1] |= x<<sh;
- sh += k;
- if(sh >= this.DB) sh -= this.DB;
- }
- if(k == 8 && (s[0]&0x80) != 0) {
- this.s = -1;
- if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
- }
- this.clamp();
- if(mi) BigInteger.ZERO.subTo(this,this);
- }
- // (protected) clamp off excess high words
- function bnpClamp() {
- var c = this.s&this.DM;
- while(this.t > 0 && this[this.t-1] == c) --this.t;
- }
- // (public) return string representation in given radix
- function bnToString(b) {
- if(this.s < 0) return "-"+this.negate().toString(b);
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else return this.toRadix(b);
- var km = (1<<k)-1, d, m = false, r = "", i = this.t;
- var p = this.DB-(i*this.DB)%k;
- if(i-- > 0) {
- if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
- while(i >= 0) {
- if(p < k) {
- d = (this[i]&((1<<p)-1))<<(k-p);
- d |= this[--i]>>(p+=this.DB-k);
- }
- else {
- d = (this[i]>>(p-=k))&km;
- if(p <= 0) { p += this.DB; --i; }
- }
- if(d > 0) m = true;
- if(m) r += int2char(d);
- }
- }
- return m?r:"0";
- }
- // (public) -this
- function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
- // (public) |this|
- function bnAbs() { return (this.s<0)?this.negate():this; }
- // (public) return + if this > a, - if this < a, 0 if equal
- function bnCompareTo(a) {
- var r = this.s-a.s;
- if(r != 0) return r;
- var i = this.t;
- r = i-a.t;
- if(r != 0) return r;
- while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
- return 0;
- }
- // returns bit length of the integer x
- function nbits(x) {
- var r = 1, t;
- if((t=x>>>16) != 0) { x = t; r += 16; }
- if((t=x>>8) != 0) { x = t; r += 8; }
- if((t=x>>4) != 0) { x = t; r += 4; }
- if((t=x>>2) != 0) { x = t; r += 2; }
- if((t=x>>1) != 0) { x = t; r += 1; }
- return r;
- }
- // (public) return the number of bits in "this"
- function bnBitLength() {
- if(this.t <= 0) return 0;
- return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
- }
- // (protected) r = this << n*DB
- function bnpDLShiftTo(n,r) {
- var i;
- for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
- for(i = n-1; i >= 0; --i) r[i] = 0;
- r.t = this.t+n;
- r.s = this.s;
- }
- // (protected) r = this >> n*DB
- function bnpDRShiftTo(n,r) {
- for(var i = n; i < this.t; ++i) r[i-n] = this[i];
- r.t = Math.max(this.t-n,0);
- r.s = this.s;
- }
- // (protected) r = this << n
- function bnpLShiftTo(n,r) {
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<cbs)-1;
- var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
- for(i = this.t-1; i >= 0; --i) {
- r[i+ds+1] = (this[i]>>cbs)|c;
- c = (this[i]&bm)<<bs;
- }
- for(i = ds-1; i >= 0; --i) r[i] = 0;
- r[ds] = c;
- r.t = this.t+ds+1;
- r.s = this.s;
- r.clamp();
- }
- // (protected) r = this >> n
- function bnpRShiftTo(n,r) {
- r.s = this.s;
- var ds = Math.floor(n/this.DB);
- if(ds >= this.t) { r.t = 0; return; }
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<bs)-1;
- r[0] = this[ds]>>bs;
- for(var i = ds+1; i < this.t; ++i) {
- r[i-ds-1] |= (this[i]&bm)<<cbs;
- r[i-ds] = this[i]>>bs;
- }
- if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
- r.t = this.t-ds;
- r.clamp();
- }
- // (protected) r = this - a
- function bnpSubTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]-a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- if(a.t < this.t) {
- c -= a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c -= a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c -= a.s;
- }
- r.s = (c<0)?-1:0;
- if(c < -1) r[i++] = this.DV+c;
- else if(c > 0) r[i++] = c;
- r.t = i;
- r.clamp();
- }
- // (protected) r = this * a, r != this,a (HAC 14.12)
- // "this" should be the larger one if appropriate.
- function bnpMultiplyTo(a,r) {
- var x = this.abs(), y = a.abs();
- var i = x.t;
- r.t = i+y.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
- r.s = 0;
- r.clamp();
- if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
- }
- // (protected) r = this^2, r != this (HAC 14.16)
- function bnpSquareTo(r) {
- var x = this.abs();
- var i = r.t = 2*x.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < x.t-1; ++i) {
- var c = x.am(i,x[i],r,2*i,0,1);
- if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
- r[i+x.t] -= x.DV;
- r[i+x.t+1] = 1;
- }
- }
- if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
- r.s = 0;
- r.clamp();
- }
- // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
- // r != q, this != m. q or r may be null.
- function bnpDivRemTo(m,q,r) {
- var pm = m.abs();
- if(pm.t <= 0) return;
- var pt = this.abs();
- if(pt.t < pm.t) {
- if(q != null) q.fromInt(0);
- if(r != null) this.copyTo(r);
- return;
- }
- if(r == null) r = nbi();
- var y = nbi(), ts = this.s, ms = m.s;
- var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
- if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
- else { pm.copyTo(y); pt.copyTo(r); }
- var ys = y.t;
- var y0 = y[ys-1];
- if(y0 == 0) return;
- var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
- var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
- var i = r.t, j = i-ys, t = (q==null)?nbi():q;
- y.dlShiftTo(j,t);
- if(r.compareTo(t) >= 0) {
- r[r.t++] = 1;
- r.subTo(t,r);
- }
- BigInteger.ONE.dlShiftTo(ys,t);
- t.subTo(y,y); // "negative" y so we can replace sub with am later
- while(y.t < ys) y[y.t++] = 0;
- while(--j >= 0) {
- // Estimate quotient digit
- var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
- if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
- y.dlShiftTo(j,t);
- r.subTo(t,r);
- while(r[i] < --qd) r.subTo(t,r);
- }
- }
- if(q != null) {
- r.drShiftTo(ys,q);
- if(ts != ms) BigInteger.ZERO.subTo(q,q);
- }
- r.t = ys;
- r.clamp();
- if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
- if(ts < 0) BigInteger.ZERO.subTo(r,r);
- }
- // (public) this mod a
- function bnMod(a) {
- var r = nbi();
- this.abs().divRemTo(a,null,r);
- if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
- return r;
- }
- // Modular reduction using "classic" algorithm
- function Classic(m) { this.m = m; }
- function cConvert(x) {
- if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
- else return x;
- }
- function cRevert(x) { return x; }
- function cReduce(x) { x.divRemTo(this.m,null,x); }
- function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
- function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
- Classic.prototype.convert = cConvert;
- Classic.prototype.revert = cRevert;
- Classic.prototype.reduce = cReduce;
- Classic.prototype.mulTo = cMulTo;
- Classic.prototype.sqrTo = cSqrTo;
- // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
- // justification:
- // xy == 1 (mod m)
- // xy = 1+km
- // xy(2-xy) = (1+km)(1-km)
- // x[y(2-xy)] = 1-k^2m^2
- // x[y(2-xy)] == 1 (mod m^2)
- // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
- // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
- // JS multiply "overflows" differently from C/C++, so care is needed here.
- function bnpInvDigit() {
- if(this.t < 1) return 0;
- var x = this[0];
- if((x&1) == 0) return 0;
- var y = x&3; // y == 1/x mod 2^2
- y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
- y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
- y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
- y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y>0)?this.DV-y:-y;
- }
- // Montgomery reduction
- function Montgomery(m) {
- this.m = m;
- this.mp = m.invDigit();
- this.mpl = this.mp&0x7fff;
- this.mph = this.mp>>15;
- this.um = (1<<(m.DB-15))-1;
- this.mt2 = 2*m.t;
- }
- // xR mod m
- function montConvert(x) {
- var r = nbi();
- x.abs().dlShiftTo(this.m.t,r);
- r.divRemTo(this.m,null,r);
- if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
- return r;
- }
- // x/R mod m
- function montRevert(x) {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
- }
- // x = x/R mod m (HAC 14.32)
- function montReduce(x) {
- while(x.t <= this.mt2) // pad x so am has enough room later
- x[x.t++] = 0;
- for(var i = 0; i < this.m.t; ++i) {
- // faster way of calculating u0 = x[i]*mp mod DV
- var j = x[i]&0x7fff;
- var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
- // use am to combine the multiply-shift-add into one call
- j = i+this.m.t;
- x[j] += this.m.am(0,u0,x,i,0,this.m.t);
- // propagate carry
- while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
- }
- x.clamp();
- x.drShiftTo(this.m.t,x);
- if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
- }
- // r = "x^2/R mod m"; x != r
- function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
- // r = "xy/R mod m"; x,y != r
- function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
- Montgomery.prototype.convert = montConvert;
- Montgomery.prototype.revert = montRevert;
- Montgomery.prototype.reduce = montReduce;
- Montgomery.prototype.mulTo = montMulTo;
- Montgomery.prototype.sqrTo = montSqrTo;
- // (protected) true iff this is even
- function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
- // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
- function bnpExp(e,z) {
- if(e > 0xffffffff || e < 1) return BigInteger.ONE;
- var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
- g.copyTo(r);
- while(--i >= 0) {
- z.sqrTo(r,r2);
- if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
- else { var t = r; r = r2; r2 = t; }
- }
- return z.revert(r);
- }
- // (public) this^e % m, 0 <= e < 2^32
- function bnModPowInt(e,m) {
- var z;
- if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
- return this.exp(e,z);
- }
- // protected
- BigInteger.prototype.copyTo = bnpCopyTo;
- BigInteger.prototype.fromInt = bnpFromInt;
- BigInteger.prototype.fromString = bnpFromString;
- BigInteger.prototype.clamp = bnpClamp;
- BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
- BigInteger.prototype.drShiftTo = bnpDRShiftTo;
- BigInteger.prototype.lShiftTo = bnpLShiftTo;
- BigInteger.prototype.rShiftTo = bnpRShiftTo;
- BigInteger.prototype.subTo = bnpSubTo;
- BigInteger.prototype.multiplyTo = bnpMultiplyTo;
- BigInteger.prototype.squareTo = bnpSquareTo;
- BigInteger.prototype.divRemTo = bnpDivRemTo;
- BigInteger.prototype.invDigit = bnpInvDigit;
- BigInteger.prototype.isEven = bnpIsEven;
- BigInteger.prototype.exp = bnpExp;
- // public
- BigInteger.prototype.toString = bnToString;
- BigInteger.prototype.negate = bnNegate;
- BigInteger.prototype.abs = bnAbs;
- BigInteger.prototype.compareTo = bnCompareTo;
- BigInteger.prototype.bitLength = bnBitLength;
- BigInteger.prototype.mod = bnMod;
- BigInteger.prototype.modPowInt = bnModPowInt;
- // "constants"
- BigInteger.ZERO = nbv(0);
- BigInteger.ONE = nbv(1);
- // Random number generator - requires a PRNG backend, e.g. prng4.js
- // For best results, put code like
- // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
- // in your main HTML document.
- var rng_state;
- var rng_pool;
- var rng_pptr;
- // Mix in a 32-bit integer into the pool
- function rng_seed_int(x) {
- rng_pool[rng_pptr++] ^= x & 255;
- rng_pool[rng_pptr++] ^= (x >> 8) & 255;
- rng_pool[rng_pptr++] ^= (x >> 16) & 255;
- rng_pool[rng_pptr++] ^= (x >> 24) & 255;
- if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
- }
- // Mix in the current time (w/milliseconds) into the pool
- function rng_seed_time() {
- rng_seed_int(new Date().getTime());
- }
- // Initialize the pool with junk if needed.
- if(rng_pool == null) {
- rng_pool = new Array();
- rng_pptr = 0;
- var t;
- if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) {
- // Extract entropy (256 bits) from NS4 RNG if available
- var z = window.crypto.random(32);
- for(t = 0; t < z.length; ++t)
- rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
- }
- while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
- t = Math.floor(65536 * Math.random());
- rng_pool[rng_pptr++] = t >>> 8;
- rng_pool[rng_pptr++] = t & 255;
- }
- rng_pptr = 0;
- rng_seed_time();
- //rng_seed_int(window.screenX);
- //rng_seed_int(window.screenY);
- }
- function rng_get_byte() {
- if(rng_state == null) {
- rng_seed_time();
- rng_state = prng_newstate();
- rng_state.init(rng_pool);
- for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
- rng_pool[rng_pptr] = 0;
- rng_pptr = 0;
- //rng_pool = null;
- }
- // TODO: allow reseeding after first request
- return rng_state.next();
- }
- function rng_get_bytes(ba) {
- var i;
- for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
- }
- function SecureRandom() {}
- SecureRandom.prototype.nextBytes = rng_get_bytes;
- // Depends on jsbn.js and rng.js
- // Version 1.1: support utf-8 encoding in pkcs1pad2
- // convert a (hex) string to a bignum object
- function parseBigInt(str,r) {
- return new BigInteger(str,r);
- }
- function linebrk(s,n) {
- var ret = "";
- var i = 0;
- while(i + n < s.length) {
- ret += s.substring(i,i+n) + "\n";
- i += n;
- }
- return ret + s.substring(i,s.length);
- }
- function byte2Hex(b) {
- if(b < 0x10)
- return "0" + b.toString(16);
- else
- return b.toString(16);
- }
- // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
- function pkcs1pad2(s,n) {
- if(n < s.length + 11) { // TODO: fix for utf-8
- alert("Message too long for RSA");
- return null;
- }
- var ba = new Array();
- var i = s.length - 1;
- while(i >= 0 && n > 0) {
- var c = s.charCodeAt(i--);
- if(c < 128) { // encode using utf-8
- ba[--n] = c;
- }
- else if((c > 127) && (c < 2048)) {
- ba[--n] = (c & 63) | 128;
- ba[--n] = (c >> 6) | 192;
- }
- else {
- ba[--n] = (c & 63) | 128;
- ba[--n] = ((c >> 6) & 63) | 128;
- ba[--n] = (c >> 12) | 224;
- }
- }
- ba[--n] = 0;
- var rng = new SecureRandom();
- var x = new Array();
- while(n > 2) { // random non-zero pad
- x[0] = 0;
- while(x[0] == 0) rng.nextBytes(x);
- ba[--n] = x[0];
- }
- ba[--n] = 2;
- ba[--n] = 0;
- return new BigInteger(ba);
- }
- // "empty" RSA key constructor
- function RSAKey() {
- this.n = null;
- this.e = 0;
- this.d = null;
- this.p = null;
- this.q = null;
- this.dmp1 = null;
- this.dmq1 = null;
- this.coeff = null;
- }
- // Set the public key fields N and e from hex strings
- function RSASetPublic(N,E) {
- if(N != null && E != null && N.length > 0 && E.length > 0) {
- this.n = parseBigInt(N,16);
- this.e = parseInt(E,16);
- }
- else
- alert("Invalid RSA public key");
- }
- // Perform raw public operation on "x": return x^e (mod n)
- function RSADoPublic(x) {
- return x.modPowInt(this.e, this.n);
- }
- // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
- function RSAEncrypt(text) {
- var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
- if(m == null) return null;
- var c = this.doPublic(m);
- if(c == null) return null;
- var h = c.toString(16);
- if((h.length & 1) == 0) return h; else return "0" + h;
- }
- // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
- //function RSAEncryptB64(text) {
- // var h = this.encrypt(text);
- // if(h) return hex2b64(h); else return null;
- //}
- // protected
- RSAKey.prototype.doPublic = RSADoPublic;
- // public
- RSAKey.prototype.setPublic = RSASetPublic;
- RSAKey.prototype.encrypt = RSAEncrypt;
- //RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
- function encrypt(){
- var public_key = "00bdf3db924714b9c4ddd144910071c282e235ac51371037cf89fa08f28b9105b6326338ed211280154c645bf81bae4184c2b52e2b02b0953e7aa8b25a8e212a0b";
- var public_length = "10001";
- var rsa = new RSAKey();
- rsa.setPublic(public_key, public_length);
- var res = rsa.encrypt("123456");
- console.log(res);
- return res;
- }
- encrypt();
复制代码 来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |