找回密码
 立即注册
首页 业界区 业界 LayerSkip: 使用自推测解码加速大模型推理 ...

LayerSkip: 使用自推测解码加速大模型推理

穆望 2025-6-4 21:40:46
自推测解码是一种新颖的文本生成方法,它结合了推测解码 (Speculative Decoding) 的优势和大语言模型 (LLM) 的提前退出 (Early Exit) 机制。该方法出自论文 LayerSkip: Enabling Early-Exit Inference and Self-Speculative Decoding。它通过使用 同一个模型 的早期层来生成候选词元 (token),并使用后期层进行验证,从而实现高效生成。
这项技术不仅加快了文本生成速度,还显著节省了内存并降低了计算延迟。为了实现端到端的加速,早期层的输出需要与最终层的输出足够接近。正如论文中所述,这可以通过一种训练方法来实现,该方法可以在预训练期间应用,也可以在特定领域进行微调时应用。自推测解码对于实际应用特别高效,它可以在较小的 GPU 上部署,并降低 大规模推理 所需的整体硬件资源。

在本博客中,我们将探讨自推测解码的概念、其实现方式以及在
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
您需要登录后才可以回帖 登录 | 立即注册