本文介绍基于R语言中的UBL包,读取.csv格式的Excel表格文件,实现SMOTE算法与SMOGN算法,对机器学习、深度学习回归中,训练数据集不平衡的情况加以解决的具体方法。
在之前的文章SMOGN算法Python实现:解决回归分析中的数据不平衡中,我们介绍了基于Python语言中的smogn包,实现SMOGN算法,对机器学习、深度学习回归中训练数据集不平衡的情况加以解决的具体方法;而我们也在上述这一篇文章中提到了,SMOGN算法的Python实现实在是太慢了,且Python还无法较为方便地实现回归数据的SMOTE算法。因此,我们就在本文中介绍一下基于R语言中的UBL包,实现SMOTE算法与SMOGN算法的方法。对于这两种算法的具体介绍与对比,大家参考上述提到的这一篇文章即可,这里就不再赘述了。
首先,我们配置一下所需用到的R语言UBL包。包的下载方法也非常简单,我们输入如下的代码即可。 输入代码后,按下回车键,运行代码;如下图所示。
接下来,我们即可开始代码的撰写。在这里,我们最好通过如下的方式新建一个R语言脚本(我这里是用的RStudio);因为后期执行算法的时候,我们往往需要对比多种不同的参数搭配效果,通过脚本来运行代码会比较方便。
其中,我们需要的代码如下所示。
[code]library(UBL)csv_path |